Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Emerg Microbes Infect ; 12(1): 2207688, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2320534

ABSTRACT

ABSTRACTPorcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Humans , Animals , Swine , Deltacoronavirus , Coronavirus/physiology , Antibodies, Neutralizing , Coronavirus Infections/veterinary
2.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2316566

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
3.
Front Immunol ; 14: 1165606, 2023.
Article in English | MEDLINE | ID: covidwho-2298752

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Viral Vaccines/genetics , Swine Diseases/prevention & control , Mutation , Antibodies, Neutralizing/genetics
4.
Microbiol Spectr ; : e0501722, 2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2288524

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that causes high mortality in piglets and has catastrophic effects on the global pig industry. PEDV-encoded nonstructural protein 7 (nsp7) is an important component of the viral replication and transcription complex, and a previous study reported that it inhibits poly(I:C)-induced type I interferon (IFN) production, but the mechanism by which this occurs remains unclear. Here, we demonstrated that ectopic expression of PEDV nsp7 antagonized Sendai virus (SeV)-induced interferon beta (IFN-ß) production, as well as the activation of transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) in both HEK-293T and LLC-PK1 cells. Mechanistically, PEDV nsp7 targets melanoma differentiation-associated gene 5 (MDA5) and interacts with its caspase activation and recruitment domains (CARDs), which sequester the interactions between MDA5 and the protein phosphatase 1 (PP1) catalytic subunits (PP1α and PP1γ), thereby suppressing MDA5 S828 dephosphorylation and keeping MDA5 inactive. Furthermore, PEDV infection attenuated MDA5 multimerization and MDA5-PP1α/-γ interactions. We also tested the nsp7 orthologs of five other mammalian coronaviruses and found that all of them except severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp7 inhibited MDA5 multimerization and SeV- or MDA5-induced IFN-ß production. Collectively, these results suggest that the inhibition of MDA5 dephosphorylation and multimerization may be a common strategy employed by PEDV and some other coronaviruses to antagonize MDA5-mediated IFN production. IMPORTANCE Since late 2010, a reemerging porcine epidemic diarrhea virus variant with high pathogenesis has swept through most pig farms in many countries, resulting in significant economic losses. Coronavirus nonstructural protein 7 (nsp7), conserved within the family Coronaviridae, combines with nsp8 and nsp12 to form the viral replication and transcription complex that is indispensable for viral replication. However, the function of nsp7 in the infection and pathogenesis of coronaviruses remains largely unknown. Our present study demonstrates that PEDV nsp7 specifically competes with PP1 for binding MDA5 and impedes the PP1-mediated dephosphorylation of MDA5 at S828, thereby blocking MDA5-mediated IFN production, revealing the complex mechanism utilized by PEDV nsp7 to efficiently escape host innate immunity.

5.
J Virol ; : e0162622, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2137422

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.

6.
Vet Microbiol ; 276: 109616, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2122888

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Molecular Docking Simulation , Coronavirus/physiology , Coronavirus Infections/veterinary , Deltacoronavirus
7.
Front Immunol ; 13: 956794, 2022.
Article in English | MEDLINE | ID: covidwho-2032775

ABSTRACT

DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-ß production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-ß. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-ß production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-ß production and functions to maintain immune homeostasis.


Subject(s)
Interferon-beta , RNA, Double-Stranded , DEAD-box RNA Helicases , Immunity, Innate , Sendai virus
8.
Vet Microbiol ; 274: 109551, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1996617

ABSTRACT

Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Viroporin Proteins , Coronavirus Infections/veterinary , Amino Acids/metabolism , Alanine/metabolism , Membrane Proteins/metabolism , Ion Channels/metabolism , Mammals
9.
J Virol ; 96(16): e0102722, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973796

ABSTRACT

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Subject(s)
COVID-19 , Deltacoronavirus/metabolism , Histone Deacetylase 2/metabolism , Swine Diseases , Animals , Humans , Mammals , Peptide Hydrolases , SARS-CoV-2 , Swine , Swine Diseases/metabolism , Swine Diseases/virology
10.
Vet Microbiol ; 271: 109494, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1886124

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that has the potential for cross-species infection. Many viruses have been reported to induce endoplasmic reticulum stress (ERS) and activate the unfolded protein response (UPR). To date, little is known about whether and, if so, how the UPR is activated by PDCoV infection. Here, we investigated the activation state of UPR pathways and their effects on viral replication during PDCoV infection. We found that PDCoV infection induced ERS and activated all three known UPR pathways (inositol-requiring enzyme 1 [IRE1], activating transcription factor 6 [ATF6], and PKR-like ER kinase [PERK]), as demonstrated by IRE1-mediated XBP1 mRNA cleavage and increased mRNA expression of XBP1s, ATF4, CHOP, GADD34, GRP78, and GRP94, as well as phosphorylated eIF2α expression. Through pharmacologic treatment, RNA interference, and overexpression experiments, we confirmed the negative role of the PERK-eIF2α pathway and the positive regulatory role of the ATF6 pathway, but found no obvious effect of IRE1 pathway, on PDCoV replication. Taken together, our results characterize, for the first time, the state of the ERS response during PDCoV infection and identify the PERK and ATF6 pathways as potential antiviral targets.


Subject(s)
Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Deltacoronavirus , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/metabolism , Swine , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
11.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1463827

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhoea in suckling piglets and has the potential for cross-species transmission. No effective PDCoV vaccines or antiviral drugs are currently available. Here, we successfully generated an infectious clone of PDCoV strain CHN-HN-2014 using a combination of bacterial artificial chromosome (BAC)-based reverse genetics system with a one-step homologous recombination. The recued virus (rCHN-HN-2014) possesses similar growth characteristics to the parental virus in vitro. Based on the established infectious clone and CRISPR/Cas9 technology, a PDCoV reporter virus expressing nanoluciferase (Nluc) was constructed by replacing the NS6 gene. Using two drugs, lycorine and resveratrol, we found that the Nluc reporter virus exhibited high sensibility and easy quantification to rapid antiviral screening. We further used the Nluc reporter virus to test the susceptibility of different cell lines to PDCoV and found that cell lines derived from various host species, including human, swine, cattle and monkey enables PDCoV replication, broadening our understanding of the PDCoV cell tropism range. Taken together, our reporter viruses are available to high throughput screening for antiviral drugs and uncover the infectivity of PDCoV in various cells, which will accelerate our understanding of PDCoV.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/genetics , Deltacoronavirus/metabolism , Genes, Reporter/genetics , Luciferases/genetics , A549 Cells , Animals , Cell Line , Chlorocebus aethiops , Chromosomes, Artificial, Bacterial/genetics , Coronavirus Infections/pathology , Deltacoronavirus/growth & development , Dogs , Genome, Viral/genetics , Humans , Luciferases/biosynthesis , Madin Darby Canine Kidney Cells , Nanostructures , Swine , Swine Diseases/virology , Vero Cells , Virus Replication/genetics
12.
J Virol ; 95(24): e0134521, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1441856

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Subject(s)
Coronavirus Infections/virology , Deltacoronavirus/physiology , Dynamins/metabolism , Endocytosis , Epithelial Cells/virology , Animals , Cell Line , Cell Survival , Clathrin/metabolism , Coronavirus/genetics , Hydrogen-Ion Concentration , Ileum/virology , Kidney/virology , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis , RNA, Small Interfering/metabolism , Swine , Swine Diseases/virology , Virus Internalization , rab5 GTP-Binding Proteins/metabolism
13.
Viruses ; 13(6)2021 06 13.
Article in English | MEDLINE | ID: covidwho-1270126

ABSTRACT

Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.


Subject(s)
Immunity, Innate , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/metabolism , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions , Humans , Immune Evasion , Open Reading Frames , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Regulatory and Accessory Proteins/genetics , Virus Replication
14.
Arch Virol ; 166(3): 935-941, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1045234

ABSTRACT

Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.


Subject(s)
Deltacoronavirus/growth & development , Gastroenteritis, Transmissible, of Swine/virology , Porcine epidemic diarrhea virus/growth & development , Transmissible gastroenteritis virus/growth & development , Virus Replication/physiology , Animals , Cell Line , Chlorocebus aethiops , Disease Susceptibility , Fluorescent Antibody Technique, Indirect , Intestine, Small/virology , LLC-PK1 Cells , Swine , Swine Diseases/virology , Vero Cells
15.
Virus Res ; 295: 198306, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1031553

ABSTRACT

Cholesterol 25-hydroxylase (CH25 H) is a key enzyme regulating cholesterol metabolism and also acts as a broad antiviral host restriction factor. Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that can cause vomiting, diarrhea, dehydration and even death in newborn piglets. In this study, we found that PDCoV infection significantly upregulated the expression of CH25H in IPI-FX cells, a cell line of porcine ileum epithelium. Overexpression of CH25H inhibited PDCoV replication, whereas CH25H silencing using RNA interference promoted PDCoV infection. Treatment with 25-hydroxycholesterol (25HC), the catalysate of cholesterol via CH25H, inhibited PDCoV proliferation by impairing viral invasion of IPI-FX cells. Furthermore, a mutant CH25H (CH25H-M) lacking hydroxylase activity also inhibited PDCoV infection to a lesser extent. Taken together, our data suggest that CH25H acts as a host restriction factor to inhibit the proliferation of PDCoV but this inhibitory effect is not completely dependent on its enzymatic activity.


Subject(s)
Coronavirus Infections/prevention & control , Deltacoronavirus , Steroid Hydroxylases/physiology , Virus Internalization , Animals , Cells, Cultured , Coronavirus Infections/enzymology , Steroid Hydroxylases/antagonists & inhibitors , Swine , Virus Replication
16.
Vet Microbiol ; 247: 108785, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-827867

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.


Subject(s)
Coronavirus Infections/veterinary , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Interferons/antagonists & inhibitors , Animals , Cell Line , Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Interferon Regulatory Factor-1/antagonists & inhibitors , Interferon Regulatory Factor-1/immunology , Interferons/immunology , Intestines/cytology , Intestines/virology , Kidney/cytology , Kidney/virology , NF-kappa B/antagonists & inhibitors , NF-kappa B/immunology , Sendai virus/immunology , Signal Transduction/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/virology , Interferon Lambda
17.
Virology ; 539: 38-48, 2020 01 02.
Article in English | MEDLINE | ID: covidwho-822398

ABSTRACT

Ionic calcium (Ca2+) is a versatile intracellular second messenger that plays important roles in cellular physiological and pathological processes. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes serious vomiting and diarrhea in suckling piglets. In this study, the role of Ca2+ to PDCoV infection was investigated. PDCoV infection was found to upregulate intracellular Ca2+ concentrations of IPI-2I cells. Chelating extracellular Ca2+ by EGTA inhibited PDCoV replication, and this inhibitory effect was overcome by replenishment with CaCl2. Treatment with Ca2+ channel blockers, particularly the L-type Ca2+ channel blocker diltiazem hydrochloride, inhibited PDCoV infection significantly. Mechanistically, diltiazem hydrochloride reduces PDCoV infection by inhibiting the replication step of the viral replication cycle. Additionally, knockdown of CACNA1S, the L-type Ca2+ voltage-gated channel subunit, inhibited PDCoV replication. The combined results demonstrate that PDCoV modulates calcium influx to favor its replication.


Subject(s)
Calcium/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus/physiology , Swine Diseases/metabolism , Swine Diseases/virology , Virus Replication , Animals , Calcium Signaling , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL